Mild Solutions for a Class of Fractional SPDEs and Their Sample Paths
نویسنده
چکیده
In this article we introduce and analyze a notion of mild solution for a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset D ⊂ R and driven by an infinite-dimensional fractional noise. The noise is derived from an L2(D)valued fractional Wiener process W whose covariance operator satisfies appropriate restrictions; moreover, the Hurst parameter H is subjected to constraints formulated in terms of d and the Hölder exponent of the derivative h of the noise nonlinearity in the equations. We prove the existence of such solution, establish its relation with the variational solution introduced in [42] and also prove the Hölder continuity of its sample paths when we consider it as an L2(D)–valued stochastic processes. When h is an affine function, we also prove uniqueness. The proofs are based on a relation between the notions of mild and variational solution established in [48] and adapted to our problem, and on a fine analysis of the singularities of Green’s function associated with the class of parabolic problems we investigate. An immediate consequence of our results is the indistinguishability of mild and variational solutions in the case of uniqueness.
منابع مشابه
$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملExistence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملExistence of three solutions for a class of fractional boundary value systems
In this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. These problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive Banach space. To make the nonlinear methods work, some careful analysis of t...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کامل